Inserm, Institut national de la santé et de la recherche médicale
Faculté de pharmacie, Aix Marseille Université

Accueil » Publications » Communications internationales » Forearm ischemia decreases endothelial colony-forming cell angiogenic (...)

Forearm ischemia decreases endothelial colony-forming cell angiogenic potential.

Mauge L, Sabatier F, Boutouyrie P, D’Audigier C, Peyrard S, Bozec E, Blanchard A, Azizi M, Dizier B, Dignat-George F, Gaussem P, Smadja DM
Cytotherapy. 2014 Feb ;16(2):213-24

Circulating endothelial progenitor cells and especially endothelial colony-forming cells (ECFCs) are promising candidate cells for endothelial regenerative medicine of ischemic diseases, but the conditions for an optimal collection from adult blood must be improved.
On the basis of a recently reported vascular niche of ECFCs, we hypothesized that a local ischemia could trigger ECFC mobilization from the vascular wall into peripheral blood to optimize their collection for autologous implantation in critical leg ischemia. Because the target population with critical leg ischemia is composed of elderly patients in whom a vascular impairment has been documented, we also analyzed the impact of aging on ECFC mobilization and vascular integrity.
After having defined optimized ECFC culture conditions, we studied the effect of forearm ischemia on ECFC numbers and functions in 26 healthy volunteers (13 volunteers ages 20-30-years old versus 13 volunteers ages 60-70 years old). The results show that forearm ischemia induced an efficient local ischemia and a normal endothelial response but did not mobilize ECFCs regardless of the age group. Moreover, we report an alteration of angiogenic properties of ECFCs obtained after forearm ischemia, in vitro as well as in vivo in a hindlimb ischemia murine model. This impaired ECFC angiogenic potential was not associated with a quantitative modification of the circulating endothelial compartment.
The procedure of local ischemia, although reulting in a preserved endothelial reactivity, did not mobilize ECFCs but altered their angiogenic potential.